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It is well documented that the central electron temperature in the National Spherical Torus Exper-
iment (NSTX) remains largely unchanged as the external heating power, and hence the normalized
volume averaged plasma pressure, β, increases. [D. Stutman, Phys. Rev. Lett. 102,115002 (2009)].
Here we present a hypothesis that low-n, pressure driven ideal magnetohydrodynamic (MHD) in-
stabilities that are non-disruptive, can break magnetic surfaces in the central region and thereby
flatten the electron temperature profiles. We demonstrate this mechanism in a 3D resistive MHD
simulation of a NSTX discharge. By varying the toroidal magnetic field strength, and/or the heating
power, we show that there is a critical value of β, above which the central temperature profile no
longer peaks on axis.

PACS numbers: 52.30.Cv 52.55.Fa 52.65.kj

Global energy confinement times for boronized wall,
H-mode plasmas in the NSTX spherical tokamak were
observed to have a near-linear BT -scaling, stronger than
typically observed at conventional aspect ratio [1, 2].
This is also observed in other STs such as MAST [3]
and Globus-M and -M2 [4, 5]. Dimensionless analysis
and dedicated scans illustrate that the strong BT scal-
ing is related largely to a strong inverse dependence of
gyroBohm-normalized confinement times with normal-
ized collision frequency [6, 7]. For high-BT , low-ν∗ dis-
charges, corresponding electron temperature profiles are
observed to be broadened, i.e. gradients in the outer
radius steepen while Te at the magnetic axis remains
largely unchanged [1, 6]. In contrast, ion temperatures
increase across the entire profile, largely following neo-
classical predictions.

The favorable reduction of electron thermal diffusivity
in the outer region of these plasmas is in part predicted
due to the favorable collisionality scaling of microtear-
ing mode transport [8, 9] and possible DTEM [10, 11].
However, core Te-flattening and change in χe cannot be
explained simply by ∇Te-driven drift wave mechanisms.
Multiple hypotheses have been put forth for explaining
this behavior. In [12], a correlation was observed between
the number and strength of high frequency global and
compressional Alfvén eigenmodes (GAE/CAE), which
has been hypothesized to significantly enhance near-axis
electron thermal transport via orbit stochastization [14–
16]. The coupling of CAE modes to kinetic Alfvén waves
(KAW) that can damp energy at the mid-radius is also
predicted to modify (i.e., broaden) NBI power deposi-
tion, which can influence plasma heating in the core re-
gion [17]. However, the estimated magnitude of trans-
port and/or energy coupling from these mechanisms are
not typically large enough to entirely explain the NSTX
observations [18].

Here, we address an additional hypothesis that low-n,
core, ideal MHD instabilities that are non-disruptive can
break-up flux surfaces, ultimately leading to enhanced
stochastic transport that preferentially influences elec-
tron thermal losses.

The microturbulenc codes normally assume that good
magnetic flux surfaces exist, which should be the case in
the absence of MHD instabilities and magnetic islands.
However, what if the surfaces are locally destroyed due to
the onset of ideal MHD instabilities? Could this produce
additional transport and possibly explain the observed
electron temperature flattening and strong BT depen-
dence of τE in STs?
Recent work by Boozer [19] shows that ideal MHD in-

stabilities can lead to magnetic surface breakup, even
for an arbitrarily small resistivity. This opens up the
possibility that the surfaces could be destroyed in the
vicinity of large pressure gradients, and that anomalous
transport could occur by way of parallel diffusion, which
is much greater than diffusion across flux surfaces. To
investigate this possibility, we have applied the 3D re-
sistive MHD code M3D-C1 [20] to some reconstructed
NSTX [21] equilibrium.

FIG. 1. Surface q-profile and pressure profiles for NSTX shot
124379 @640ms

Consider the equilibrium from NSTX shot 124379 at
time 640 ms shown in Figure (1). This has RBT = 0.418
m-T, plasma current Ip = 990 kA, β = 6.8%, βN =
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βT (%)×BT (T )×a(m)/IP (MA) = 3.9, and central safety
factor q(0) = 1.29. (A scaled version of this equilib-
rium was used in [22], which focused on maximizing the
n=1 mode.) This equilibrium is unstable to many low-n
(toroidal mode number) ideal MHD modes as shown in
figures (2) and (3)

Pressure driven, radially localized, ideal MHD modes
such as these, which occur in low shear regions at
pressure-gradient values below the ideal MHD infinite-
n ballooning limit [23], and where the growth rate is an
oscillatory function of the toroidal mode number n, have
been referred to as infernal modes [24–27]. Because this
equilibrium is unstable to ideal MHD modes, it is un-
likely that this equilibrium file is a true representation of
the experimental equilibrium at that time. Nevertheless,
we evolve this configuration in time to see if it evolves
into a nearby stable equilibrium state.

For simplicity, we used the single-fluid form of the 3D
nonlinear M3D-C1 code to advance the particle density
n, the fluid velocity V, the plasma pressure p and the
magnetic scalar and vector potentials Φ and A according
to the following partial differential equations:
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The magnetic field and current density are then deter-
mined by B = ∇×A and J = ∇×B. The symbol ∇⊥
in Eq. (3) refers to the gradient in the (R,Z) plane in
a (R,ϕ, Z) cylindrical coordinate system. Equation (3)
follows from the gauge condition on A, ∇⊥ ·R−2A = 0.
The temperature is the pressure divided by the density,
T ∼ p/n. The linear form of the code used for linear
stability studies is just the linearized form of these same
equations.

The particle diffusion term D in Eq. (1) is a small
term included to aid numerical stability. The resistiv-
ity η in Eq. (4) is the temperature-dependent Spitzer
function [35] with no enhancement. The stress tensor in
Eq. (5) is of standard form for viscosity [36], with viscos-
ity coefficient µ The heat conduction, q in Eq. (5) has
both an isotropic part and a part parallel to the magnetic
field: q = −κ∇T − κ∥∇∥T .

The M3D-C1 code uses finite elements in all three di-
mensions. In the (R,Z) plane these are unstructured
triangles that, for most of these calculations, vary in size
from h = 4 cm near the separatrix to 1 cm near the

FIG. 2. Normalized growth rates for unstable modes with
toroidal mode numbers 1-18 for NSTX shot 124379 @640ms.
Also shown (in green online) are the growth rates with the re-
sistivity increased by 10, indicating that these are ideal MHD
instabilities.

FIG. 3. Linear eigenmodes showing pressure contours for
modes with n=3,9, and 15 from Figure (2). Other modes have
similar structure, with poloidal mode number m ∼ (4/3)n.

axis. This grid, with 10346 elements per plane we call
Grid A. As a convergence test, we also redid some of the
calculations on a Grid B with 28792 elements per plane
which vary in size from 2 cm near the separatrix to 1 cm
near the axis, and on a Grid C with 38063 elements per
plane varying from 1.5 cm to 1.0 cm. In the toroidal di-
rection we used 24 planes with structured equally spaced
Hermite cubic finite elements, but also performed con-
vergence studies with 36 and 48 planes. Within each 3D
toroidal prism element is a polynomial in (R,ϕ, Z) with
72 coefficients. The numerical error should vary as h5

within a plane and h4 in the toroidal direction.

This evolution was for 6000 Alfvén times, τA, corre-
sponding. to about 2.75 ms. We used very small di-
mensionless transport coefficients to avoid them chang-
ing the profiles significantly by themselves, and to avoid
the need for a density and energy source. (Ohmic heat-
ing was present but was negligible for the resistivity and
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FIG. 4. Poincaré plots of the 3D M3D-C1 simulation at times
(a) t = 0, (b) t = 500τA, (c) t = 600τA, and (d) t = 6000τA

time scales involved.) The plasma current was main-
tained at the initial level by adjusting the loop voltage
at the boundary. In code units, the dimensionless values
were D = 10−6, κ = 10−6, µ = 10−6. (To get the values
in m2/s, divide by τA = 4.58 × 10−7s.) In contrast, the
dimensionless parallel thermal conductivity was κ∥ = 10,
7 orders of magnitude greater than κ. In code dimen-
sionless units, the resistivity on axis corresponding to
the Spitzer resistivity of a 916 eV plasma was initially
η = 2× 10−8.

We show Poincaré plots of the configuration at 4 times
in the evolution in Fig. (4). The initial configuration
was linearly unstable as we saw in Figures (2) and (3).
Nonlinearly, the n = 3 mode grows largest and around
the time t = 500τA deforms the surfaces, primarily those
near q = 4/3 with a dominantly m = 4 poloidal varia-
tion. The stochastic region near and interior to that sur-
face causes the temperature and pressure to drop there,
restabilizing the plasma. At the final time, t = 6000τA
in Fig. (4), the configuration is again stable with only a
small dominantly n = 3 toroidal variation.

We show in Fig.(5) the midplane temperature profile
for the initial state and the results at time t = 1200τA for
calculations using Grid A, Grid B, and Grid C with 24
planes, and Grid B with 24, 36, and 48 planes. It is seen

FIG. 5. Midplane temperature profiles for the initial state
and for the results of the calculation at t = 1200τA using
(left) Grid A, Grid B, and Grid C with 24 planes, and (right)
Grid B with 24, 36, and 48 planes.

that the temperature has decreased significantly in the
center, near the magnetic axis, but has actually increased
at mid-radius. Thus, the result of the ideal instabilities
and associated parallel transport on the ergodic field lines
was to effectively increase the transport in the center,
near the original magnetic axis. The fact that the results
obtained on Grid B and Grid C on the left figure and
with 36 and 48 planes on the right figure nearly overlay
one another gives us some confidence that the results
are sufficiently converged. This increase of the effective
thermal conductivity in the center, over that which would
be expected from microinstabilities alone, may explain
similar experimental observations [12].

To further study and better quantify the effect of the
ideal instabilities, we have generated a family of initial
equilibrium states by applying Bateman scaling [37] to
the initial equilibrium reconstruction. This scaling leaves
the toroidal current density, Rp′ + R−1FF ′, unchanged
but increases or decreases the toroidal field strength by
a factor FS at the separatrix. We generated two ad-
ditional initial equilibrium states by setting this factor
to be FS = 0.9 and FS = 1.1. This generated addi-
tional initial equilibrium with (β = 8.2%, q(0) = 1.2)
and (β = 5.8%, q(0) = 1.4) respectively.

We redid the calculation with each of these initial equi-
librium states and plot the midplane electron tempera-
ture at t = 1200τA for these and the original configura-
tion in Fig. (6b).

The profile labled βN = 3.5 in Fig. (6b) corresponds
to an equilibrium configuration with FS = 1.1 that was
MHD stable and so it retained good nested magnetic sur-
faces and the central temperature changed little from its
initial value. The curve labled βN = 3.9 was taken from
the equilibrium used in Fig. (5), with FS = 1.0. The
destruction of the magnetic surfaces in the center led
to a central flattening of the temperature profile. The
curve labled βN = 4.3 corresponds to an equilibrium with
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FIG. 6. (a) Experimental midplane electron temperature for
the three equilibria considered in Ref. [12, 13] (b) M3D-C1
midplane electron temperature at time t = 1200τA starting
from the three Bateman scaled equilibria corresponding to
FS = 1.1, FS = 1.0 (the original), and FS = 0.9

FS = 0.9 that was initially even more unstable than that
of the original equilibrium, and that increased instability
led to a larger region in the center with destroyed surfaces
and flattened temperature profile.

Each of the two unstable equilibria were linearly un-
stable to many modes, but the dominant nonlinear mode
in the FS = 0.9 case was the (5, 4) (poloidal,toroidal)
mode, whereas for the FS = 1.0 case it was the (4, 3)
mode. This shift was likely due to the change in the q-
profile and associated rational surfaces due to the change
in the toroidal field.

In Fig.(6a) we plot three experimentally measured
midplane electron temperature profiles taken from the
shots analyzed in Ref. [12, 13]. While not meant to be an
exact comparison, we see the same qualitative behavior
between the experimental profiles (a) and the simulation
profiles in (b). At low enough βN the profiles are most
peaked. As βN increases, the profiles flatten near the
axis, but steepen at mid-radius. The simulations seem to
have reproduced the most dominant experimental char-
acteristic..

This scan was somewhat unphysical because the scaled
equilibrium with FS = 1.0 and FS = 0.9 were unsta-
ble and so unlikely to have occurred in an experiment.
In an attempt to make a more physical calculation, we
began with the stable equilibrium with FS = 1.1, ap-
plied a heating source, and ran for 10, 000τA, or about

FIG. 7. Midplane electron temperature at the initial and
5 additional times for the 3D calculation (right) and for a
2D calculation with the same transport coefficients and heat
source (left)

4.6 ms. The heating source had spatial dependence
SE ∼ exp(−((R−R0)

2 +(Z −Z0)
2)/δ2) where R0 = 1.0

m, Z0 = 0.0, and δ = 0.4 m. To shorten the calculation
we applied an unrealistically large heating source of 32
MW. The resulting temperature profiles at the initial and
5 additional times are shown in Fig. (7) along with those
in a companion 2D calculation with the same transport
coefficients and heating source.

Comparing the 2D and 3D profiles from Fig.(7), we
see that the first 2 or 3 time slices are essentially iden-
tical. However, at about t = 6000τA, corresponding to
2.75 ms when the β had increased from 5.8% to 8.4%,
the primary effect of the heating was to broaden the 3D
calculation temperature profile, not uniformly increase it
as in the 2D calculation. This broadening of the temper-
ature profile as β increases is qualitatively similar to the
NSTX experimental result presented in [12]

In summary, we have demonstrated a new mechanism
that could limit the central temperature and peakedness
of the pressure profile in a ST. There are indications
that this also occurs in MAST [28], although this ref-
erence emphasizes -the role of the n = 1 mode when
q(0) ∼ 1. The details and significance of this mecha-
nism clearly depends on the form of the pressure and
current profiles and needs to be further explored for a
range of discharges. However, it is clear that the possible
destruction of surfaces by ideal MHD instabilities should
be taken into account when performing data analysis and
when projecting ST parameters for future devices.

There are reports of confinement degredation in high-β
operation of conventional aspect ratio tokamaks as well
when infernal modes are observed. This has likely oc-
cured in JET [29, 30], TFTR [31], JT60-U [32], DIII-
D [33], and JT60-SA [34]. Future studies will help clairify
what role the aspect ratio plays in this mechanism and
how best to minimize its effects.

These studies use a fixed ratio of parallel to isotropic
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thermal conductivity of κ∥/κ = 107 which was somewhat
artificial and arbitrary. We have found that the final
results depend only weekly on this ratio since for suffi-
ciently high values, the process is self-regulating as the
large parallel transport reduces the local pressure gradi-
ent and thus removes the drive, returning the configura-
tion to a stable state.

It is also worth noting that the M3D-C1 code has a
“reduced MHD” option that advances only the poloidal
flux, the vorticity, and the pressure [20]. The infernal
modes shown in Figs. (2) and (3) were not found with
that option, and so future analysis studies should use

the full MHD model as was done here.
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